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SPATIAL CONTACT PROBLEMS FOR ROUGH ELASTIC BODIES UNDER ELASTOPLASTIC 
DEFORMATIONS OF THE UNEVENNESS* 

B.A. GALANOV 

On the basis of /l, 2/, a model is constructed for the contact between a 
rigid stamp and a rough body taking elastoplastic deformations of the 
unevenness into account. The contact model for rough bodies with elastic 
deformations of the unevenness is a special case. A classical approach 
utilizing boundary integral equations is applied in the mathematical 
formulation of the contact problem. Under quite general assumptions (for 
instance, the multiconnectedness of the contact domain desired), the 
uniqueness and existence of the solution are investigated. A method is 
developed to determine the contact pressure, the closure of the bodies, and 
also the contact area which consists of two parts in the general case, a 
zone of elastoplastic deformation of the unevenness and a zone of their 
elastic deformation. The efficiency of the method is shown in examples 
of new contact problems. The solution is represented in a convenient 
form for analysing the influence of the roughness. This is of considerable 
value for material testing by a contact method. A fairly complete survey 
of research on contact problems for rough bodies can be found in /l-4/. 

1. Ponmrlation of the problem. We examine the contact problem for a rough elastic 
half-space z > 0. A rigid stamp bounded by the surface z = -flj(s. y)< 0, fi = const> 0. is 
impressed into the half-space by a force P. The stamp occupies the domain z < -@j(r, y). It 
is assumed that j(z, JJ)E C(E,) (EI is the z = 0) plane). 

We shall assume the normal displacements w(M) of the half-space boundary at the point 
M(z, y) to have the form w(M) = wr(M)i- w, (M) and no friction between the stamp and half- 
space. Here wl(iw) are displacements because of elastoplastic deformations of the unevenness 
(a rough layer), and wz(M) are elastic displacements of the half-space. 

According to the results obtained in /l, 2/, the displacements w,(M) are a function of 
the contact pressure p(M), i.e ., wl(M) -@(p(M)). The specific form of the functional 
connection w, = Q,(p) will be examined below. 

The displacements ru, (M) are defined thus /5/ 

1ue(M)= eSK(M, N)p(N)dSN 
Y 

K(M, N)=:R~N=[(~--)*+(1/-9)*]-‘“, 6== 

where SC E, is the contact area, RMN is the spacing between the points M (5, Y) and N (E, rl), 
and E and CJ are Young's modulus and Poisson's ratio. 

Let h>O be the settling of the stamp, and g(M)=h -pj(kf). Then the geometric 
condition of stamp contact with the half-space w, (M) + w, (M) = g (M) has the form 

(D(p(M))-teSK(M,N)p(N)dSN=g(M); M,NES 
Y 

Therefore, the contact problem reduces to finding the quantities p (31). S, IL from the 

system (L is the boundary of S) 

(D(p(M))+BSK@', N)p(N)d’)‘~=gPf) (1.1) 
5 

j,(N)dSN=P; p(M)>O, p(L)=09 MES 
s 

e\K(M, N)p(N)dSN>g(M); p(M)=09 ME(J%\~~ 
s 

For elastic strains of the unevenness the function Q(p) has the form /l-4/ 

w1 = CD (p) s Apa; A = coast > 0, 0 < Q = const < 1 (1.2) 

If p > [p,] = const>O, then the unevennesses are deformed elastoplastically and the 
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function LL'~ = m(p) is represented implicitly by the formulas (/2/r p-86) 

Here I$ is the ratio of the incomplete beta functions, or is the yield point, and v 
is the exponent of the reference curve of the surface roughness profile (see /2/ for the remain- 
ing notation in (1.3)). 

Formulas (1.2) and (1.3) show that the relation u)r = m(p) is determined by both the geo- 
metric parameters of the rough layer and by the elastoplastic properties of the half-space 
material. The constant [p,] (see /2/) indicates the contact pressure level above which a 
certain fraction of the unevenness starts to be deformed plastically, i.e., determines the 
domain of elastoplastic deformation of the unevennesses 0 = {M : p (M) > IpJ}; 0 c s. 

The existence of a strictly monotonic continuous function w1 = a(p) for p 20 follows 
from the strict monotonicity of the continuous function cp (9). 

We shall later consider the function m(p) continued to values p CO by means of the 
formula u)~ = A sign p jp 1% and shall denote the inverse function for 0 by H. The function 

P = H (WI) is defined for all w,, is continuous, grows strictly, 0 =H (O), and a constant c, 
exists such that I H (4 I Q c* I lo, Pa. 

In addition, we assume with respect to the function f(M) that for any h< 00 a bounded 
domain Qh = (M :g (M)> 0) exists and g(M) G 0 for MS&, (the domain Q,, can be multi- 
connected). Obviously S& ,Z Qh, for k, > h,. 

Proposition 1. If {p, s, h} is a solution of system (l.l), then s c P,, and P (M) E 

C 6%). 
The first inclusion S c& is evident. The second inclusion is proved by reductio ad 

absurdum. 
This is an alternative: 1) p(M), ME S is a discontinuous bounded measurable function; 

2) p(M), ME S is an unbounded measurable function. For the former possibility the sum 
@ (P (W) -L wx (Jf) is a discontinuous bounded function (since u+(M) is continuous /6/ and Q,(p) 
is a strictly monotonic continuous function), which contradicts the continuity of s(M). For 
the latter possibility the sum @(p(M))+ra,(M) of non-negative functions, at least one of 
which is unbounded, is unbounded. This again contradicts the continuity of g(M). The con- 
tradictions obtained prove Proposition 1. 

Let us introduce the positively homogeneous bounded operator Q which sets U(M),MEQ 
in correspondence with the function u+(M), Mc_SZ by means of the rule 

u+ (M) = Q (u (M)) = max {u (M), 0) 

For ueC(Q) and u'EC(Q) we have 

II~+Il<ll~II~ IOU-Qu’lgIu--‘I~IIu-~‘11 
With respect to the unknown function u(hf), we examine the Hammerstein equation in C(Q): 

u(M)--BSK(Mv N)Q(H(g(N)-u(N)))dS,q=O; M, NEQ 
Q 

(1.4) 

where Q is an arbitrary bounded domain containing the closure of &. 
If u(M) is a solution of (1.41, then p(M)= Q(H(g(M) --11 (M))), s={M:g(M)>u(M)) 

and h is a solution of system (1.1) for p = Q(H(g(N) - 
SI 

u(N)))dSru, where S#Qr for Q,+ 

0. Conversely, if (p, S,h} is a solution of system (1.11, then the function 

g(M)--@(M)), MES 

u(M)= esK(M, N)p(N)dS,, ME@\~) 
1 5 

is a solution of (1.4). 
We later set 'A = {M:fij (Al),< h,} in (1.4) for all he [O,h,l. 
To reduce the writing, we represent (1.4) in the operator form 

u-8KQH(g-u)=O; UEC, gEC 

and use the notation 

go (M) = h, - Bf (Mb 81 = r,c,-’ II K 11-l (11 go !I + rd-l’a 

(1.5) 

Po=sQQH(go(N)--uo(N)))dS,; U=~ll+Oc, 
Q 

Here KQHis a completely continuous operator in C(Q), and u0 is the solution of (1.5) 
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for h =h,(h, is the settling of the stamp under the force P,,). 
The sufficient conditions for problem (1.1) to be solvable are set by. 

Proposition 2. If 8 Gee,, then system (1.1) has a unique solution for P Et IO, P,I : 
~t~)~Q(~(g(~) -uW)))fC(~) 
S={M:g(M)> ZJ (iv)} c a; h E IO, h,l 

(u(M) EC @) is a solution of (1.4)) that exists for all h E (0,&J (p(M) = 0 for MS a). 
Here h =ti h(P), P E [O, P,J is a continuous * strictly increasing function while the domain s can 
be multiconnected. 

Proof. We consider the sphere U= {~:Huifr~} and the operator GumBKQHfg-a), %E 
G (Qt. For h=ha and UGSU we have 

II Gu B G @c, I K !I II go - u IFa g Bc, II K II (II go II -t- fP d %c. I II II (II 67, II + roPa = r. 
i.e., the operator G converts the sphere U into itself and has a fixed point IA@ there (according 
to the Schauder theorem). The following solution of system (1.1) corresponds to this point 
for P=P,: 

Pw= Q(~(go(~)- 110 WM, S = W :oa (M) > %(M)), h = he 

Since [xg<igei andP&CP for h~[O,h&then the existence of the solution u(~)of (1.5) is 
proved analogously for all hE(o,&J, and therefore, the existence also of the function 

P(h)= 
! 

QV-f(gb’f)-u(W))dSJf; h=[O,hal 

Let q, u, be solutions of (1.5) corresponding to the values h= hz<ho and h= h,Qh,. 
We introduce the notation 

(~.~)=~a(~)b(N~dS~, ZJ=g--u 

g, = h:- Bf, g, = 4 - Bf, v, = 8, - 111 
u1 = g, - LC#, e = u, - v,, d = QHv, - QHq 

and we write (1.5) in the form 

v+"~KQHV=g;uaaC,g~C (3.6) 
We can obtain from (1.6) 

efBKid==h,-4 (1.7) 
(~7 4 + 0 (K& 4 = (ha - h,)(P (A,) - J'(U) 
(8, e) -I- 0 (K& e) = (& - 4, 8) 

Because of the properties Q and the strict growth H the following inequalities hold: 

d(M)>0 when e(M)>O; d(N)<0 when e (M) ( 0 (1.8) 
Hence (since K is a strictly prositive operator), the second equation in (1.7) is possible 

for k, = h, only for d= 0. This means that 8~0 (the corollary of the first equality in 
(1.7)). In other words, (1.6) and (1.5) can have just one solution. Consequently, system 
(1.1) can also have just one solution {P,S,h). 

Now, let h,#h,. Since d+tJ here, then strict growth of the functions P =i P (h) and 
h= h(P) fol.low from the second equation in (1.7) and (1.8). 

Let the quantity h, be fixed and h--f+. Then (since fk’d, e)’ B (Kd, d) Vk, e), (Kd, d) -. 0, the 
functions B are bounded in the set for all &< h,), it follows from the last equation in (1.7) 
that (e, e) - 0. Hence, and from the continuity of the operator QII we obtain 

r(hb)-P(h,)=S(QH(2.*(N))-~(ZII(l.,(‘~)))dSN-o, kz--h, 
$2 

i.e., the function P = p(h) is continuous for /IE[o,&,~. Consequently (taking account of the 
strict increase of p(k)), we conclude that the function ~=it(f') is continuous and increases 

strictly. The proof of Proposition 2 is thereby completed. 
Therefore, the problem of solving system (1.1) is equivalent to the problem of seeking 

the pair (u(M),IL) from a system consisting of (1.5) and the equation 

f' = \; 0 (ff (g(N)- U (!v)))dss, 
; 

Different approximate methods, in which the most awkward element is the process of solving 

(l-S), can be used to solve the system mentioned. 
For j wI j ‘et 11 go j/ i- r, let the function II(w,)satisfy the Lipschitz condition with constant 

L, 0, = L-l // K /I--L, tf < rnir, (O,, l&],k8. =lO, &I. Then the method of successive approximations 

U,,,, = OK!,/f (fi - u,,), U0 =-- 0; II 0. I. ", . 

reduces to solving (1.5). Other approximate method /7, 8/ can also be used to solve (1.5). 



z = xX*; I/ = xy,; x = (hlfi)"Y S = H#(S,) 

p (M) = 0-l (hm-l&llmF (q (M,)); p = A0-Q (f3aMm-Q=-)‘~” > 0 

Here 

1 signs I q I16 q < PiI 

F (‘) = \ 2&‘(n/5,4)‘/* [q]lkp (+) , q > [ql 

H!Y is a homothety with centre 0 and coefficients x, [q] = A [p,la(ph)-‘> 0, where [q] is indepen- 
dent of h for m = 1, a = 2/(2v + 1). 

We call the function p*(M,)=F (q(M,)) th e reduced constact pressure, and the domain 
w* = {M,: p* (M,) 2 IqP} c s, is the reduced domain of elastoplastic deformation (a = AY,~(o,)). 

We obtain the following system for the unknowns q(M,), S,,h 

pq (M,) + ss, K (M,, N,) F (q (N*)) dSN. = I- f (M,) WV 

q (M,) > 0; q (L*) = 0; p = A@-= (fY‘h~(“‘+“‘)~~” 

h = h&ll(‘W (&‘fJ)W”‘+l), M, E S, 

s K(M,,, N,)F(q(N,)) dSN,> 1 --f("f,); q@f*)=Ot M,eZsS, 
6, 
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~11 the constructions made above can be performed in broader spaces can c (8). Moreover, 
t_he method of investigation considered possesses considerable generality and can be extended 
to contact problems taking account of the friction forces and moments acting on the stamp. 

In addition to the constraints on j(M) assumed above, we shall later assume that j(M) 
is a positively homogeneous function of degree M. 

We make a change of variables in (1.1) 

h, = ( 5 F (q ( NL)) d&“e)-m”m+l) 
5. 

Here L, is the boundary of the domain S, while q, F, S,, p,cz,l+ are dimensionless quan- 
tities. 

The scalar h, evidently depends on y, a, [ql,f. The case 
p~O([p,] = 00) corresponds to the Hertz formulation of the 
contact problem for ideally smooth elastic bodies. For 
0 c a < V, the function F(q) is defined for all q, is con- 
tinuous, increasesstrictly, and a constant cL exists such that 

I F Cd I < ~1: I q Pa. For 0.4<a<'j, and q = 141, the deriva- 
tive F' (q) is a discontinuous function (lim F’ (q) = 00 as 
P - M + 0). If there are no plastic strains, then the func- 
tion F(q) is defined for all g and is continuously differen- 
tiable for O<ag1. 

Fig.1 shows graphs of the function F(q). Curvesl, and 2 
are constructed for [ql = 0.3 and the values v = 1.5 and 
v = 2.5, respectively. 

Starting from this, we distinguish two cases: a) F is a 
continuously differentiable function, i.e., there are no plastic 
deformations of the unevennesses or O(ag0.4 for elasto- 
plastic deformations of the unevenness; b) the derivative F' 

Fig.1 

is a discontinuous function for q = 191, i.e. elastoplastic deformations exist and OA<a<V,. 
We introduce the notation L,, = {M,:q(M,)= [ql), S- = S,\L,,. Then the following prop- 

osition establishes the additional properties of the solution q(M,) of the system (1.9): 

Proposition 3. If j (M,)E Lip, (S,), O<r< 1, the derivative j' (M,) with respect to any 
direction 1 is continuous at the point TES* in case a) or at the point TES in case 
b), then q (M,JELipr (S,) and the corresponding derivative q’(M,) is continuous for M, = T 
(if TEL,., then q’(T)= lim q’ (T,) as T,-T, where T, is an interior point of S,,, on 2, and 
Lip,(S,) is a class of functions satisfying the Lipschitz condition with index r on S,). 

Proposition 3 is a corollary of Theorem 4 C/6/, p.422) and Theorem 1.5 C/7/, p.339). 
The deduction that if j (M,)E Lip,(S,), O<r<l and the point TEL,, in case b), then the 
continuity of f' (M,) for M, = T does not guarantee the continuity of the corresponding 
derivative q’ (M,) at the point M, = T, follows directly from these theorems. In other 
words, the contact pressure p(M) on the domain boundary 61 will not generally by a smooth 
function (because of the discontinuity in the derivative F' (q) for q = [q] and 0.4~ a<s//,). 

Examination of the contact problem for a half-space does not limit the generality. This 
is explained by the fact that each of the bodies making contact can be replaced by a half- 
space if the radii of curvature of these bodies are large compared with the size of the contact 
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area. 

2. Method of solution. System (1.9) is solved by the method of successive approxi- 
mations. The crux of the method is that as S,(h) approaches the domain S, and h(k) approaches 
h (k = 0, 1, 2, . ..) a $k) anda solution q(k)(M,,) 0ftheEammerstei.n integral equation (1.9) are 
determined by which the approximation JJ~(~)(z,,,~+) to the reduced contact pressure p*(s*, y,) = 
F (q(z*, y,)) and therefore, the next approximations s$?'),It(k+f) are determined. The construction 
of the sequence S,ts,k = 0, 1, 2, . . . is here carried out as in /9/. The solution of the 
appropriate Hertz problem can be taken as the initial approximations S*(O), h(O) . Since q (M,) > 
0, the domain S,(O) - {&Z&f(M,)< 1) 3 S, can also be taken as an initial approximationofS,@ 

The process of seeking the successive approximation consists of two fundamental steps: 
obtaining the solution q(M,) = q@)(M,) of the integral equation (1.9) for a fixed domain of 
integration S, = S.(k) (k = 0, 1, 2, . . .) and construction of the next approximation S*(k+l) to 
the domain S, by means of the solution q(k)(MJ obtained. 

For large p the integral equation (1.9) can be solved by the method of successive approxi- 
mations 

(2.1) 

i = 0, 1, 2, . . . 
Convergence of the method (2.1) was observed for k> 1 in the problems examined later. 

More important in practice are the values p < 1. For these values of p and the values of 
the parameter a for which the operator on the left side of integralequation (1.9)i.s Frkchet 
differentiable /6/ in C(S,), Newton's method is effective 

qi+l W*) = qi (Me) + At (MO); i = 0, 1, 2, . . . 

1’4 (M,) + s K (Me, N,) F,’ hi W,))4 (NJ dSN. = 

1 - f p:;- Ei (M,) 

Ei (Ma) = Wi (Me) + S K (MO* No) F (a (Nd) UN, 
s. 

(2.2) 

In case of the non-differentiability of the operator mentioned (for 0.4 < a < V3 and 
elastoplastic unevenness deformations), an iteration process is used 

qi+lW,) = qt (M,) + yAi (M,); 0 <P < 1, i = 0, 1, 2, . . . (2.3) 

w%(M,) + S KW,. N,)~I~,(N,)I"-*~((N,)~SN.= l-ff(M,)--Ei(M+) 
S-. 

where the quantity et is defined in (2.2) and n = lia. 
We now consider the process of obtaining successive approximations 

We go over to polar coordinates r,m. Let r= pk((P) be the equation of 
domain Se(“), and q(k)(r,cp) the solution of the integral equation (1.9) 
boundary. We introduce the auxiliary function pk*(~) by the following 

of S,(s,k=0,1,2,.... 
the boundary of the 
corresponding to this 
method: 

(2.4) 

If &+ = pk and p,(k) (pkr cp)# 0, then we set 

and p*(t) bk+, cp) = 0. 
Then the iteration process that was used to seek the domain S,is written in the form 

Pk+l= pk + ‘? (Pk - pk') 
dk) (Pk. 9) 

I 

I P’“‘@ 
1 

+ 9) I + I P’(Pk. 9)l k * . 

(2.5) 

p,, = (f (cos cp, sin cp))-l/tn; k = 0, 1, 2, . . .; 0 < y < 1 

The iteration method (2.5) can be considered as a set of one-dimensional iteration 
processes operating on each ray cp = con& in the plane Oz,y, and leaving from the point 

0. For axisymmetric problems the method of bisection is also effective in looking for the 

contact circle. 

3. Numerical analysis. The examples examined below enable us to estimate the possi- 
bilities of the method and the influence of the roughness. All the calculations were performed 

on the BESM-6 computer. Systems of linear algebraic equations corresponding to discrete 
formulations of the problems were solved by Gauss's method. The confidence in the results 

obtained was determined (mainly) by their stability to an increase in the number of mesh nodes 



of double or more. 

Example 1. A pyramid1 Z= -3mnx(I~1,j~I), 6= ctgy (v is the angle between the I axis and 
the pyramid face) is impressed into the half-space z>,O. The contact pressure distribution 

p*(M,) obtained for elastic deformation of the unevenness is shown in Fig.2 for p=O.S and 
cc = 0.5. We also show here for comparison (the dashes1 the boundaryof the contact area 
corresponding to Hertz's formulation of the problem, p=o /Q/J. The value A,= 2.35 is obtained 

instead of 2.03 in Hertz's formulation. 
The contact pressure distribution on the 02, axis are shown with and without taking 

account (dashed curve) of the rough layer in Fig.3. 
The contact area S, and the contact pressure distribution ~+(Al,f on it (h,= 2.81) are 

shown in Fig.4 for p=os,a=o,2, [q]=O.4. The dashed line in this figure bounds the reduced 
domain of elastoplastic deformations of the unevenness o*= (M,:p,(M,)>,O.4'). 

Fig.2 Fig.3 

Fig.4 Fig.5 Fig.6 

Despite the fact that the stamp is not smooth, the contact pressure when there is rough- 
ness is determined by the continuous function A*(M,) unlike Bertz's formulation of this 
problem (see Appendix 1). 

Equations (2.1)-(2.5 were discretized as in /9/. The symmetry of the solutions Q(M.),S. 
relative to the four axes was taken into account in compiling the system of linear algebraic 
equations. The order of the system reached 66. The process (2.5) (~'0,s) was halted when 

IP (Pk OP), VP)16 5*1V‘. The computation time was 8 min for no plastic strains, and 15 min when 
th*ere were plastic strains. 

Example 2. A cone z= -$$&q B=ctgy (y is the angle between the cone generatrix 
and the t axis) is impressed in a half-space Z),O. The values of the function &(a,& 
obtained and the reduced radius of the contact area ~@.a) are given for elastic deformations 
of the unevenness on the left side of the table (the top row is he and the bottom is a*). 

Table 

P P.0 0.2 0.6 1.0 a-0.2 0.6 1.0 

u 2.22 2.22 2.22 2.23 0.65 0.65 0.65 0.72 % 
0.2 2.51 2.20 

O.i8 
;::: 2.53 2.23 

0.68 0.82 
% 

0.74 
U.6 3.38 2.55 2.35 3.48 

0.9G 0,79 
2.63 2.41 

0.72 0.96 0.83 0.78 
1 .I.+ 4.90 2.79 2.44 5.13 

0.95 
2.94 

0.83 
2.52 

0.75 0.93 0.86 0.80 
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Distributions of the contact pressures P.(r,), r.=il ~z,a+y.~ are displayed in Fig.5 for 
different values of the dimensionless parameters. The dashes show the pressure distribution 
corresponding to Hertz's formulation of the problem, pzZ0 /3/. Line 1 corresponds to the 
values p=0.4,a-O.S,[~~l=0.4 for elastoplastic deformations of the unevenness in the domain 
o+ = (pt :P+ (rd & OA*J; line 2 corresponds to the values p = 0.2, a = 0.4, 141 = 0.05 for elastoplaetic 
deformations of the unevenness in the domain o* = (r* : p* (r*) > 0.052~~). 

When there is roughness the contact pressure p.(r.) is a continuous function (Proposition 
1) but not generally smooth, as mentioned above. The calculations showed a high probability 
of a break on the boundary of the domain w* of the graph of the function P* PC) for I’ = 0.6. 
c = 0.5, 191 = 0.4 (Fig.5, curve 1). 

Discretization was realized taking axial symmetry into account. The contact circle SC' 
of radius a:) was divided into area elements of equivalent area. The partition along the 
radius was assumed to be uniform. The mesh nodes were placed within the area elements. The 
polar angles of the nodes located on the circle r= a$' (j-_)/(N-i) (j= 1, 2, . . . . X), equal 

I 
n(i-1) -fori-1,2,....8(j - 1)and I = 2,3,. ..,(A’ - I) 

‘pi= 
wfori=l,2 .,... 4(N-1). j=N 

Here N is the order of the system of linear algebraic equations. Results are given for 
N=il and 401 nodes. The iteration process was terminated when the following condition was 

satisfied: The computation time for one value of the group of parameters 
Ir. a* IP1 

1 pp (at))/ Q 5.10-a. 
is 30'seconds for elastic deformations, 1 minute for elastoplastic deformations and 

a smooth function F, and 15 minutes for elastoplastic deformations and a discontinuous func- 
tion F'. 

Example 3. A paraboloid Z= -B(z*-!-$), 6=(2E)-‘(R is the radius of curvature of the 
paraboloid at the vertex) is impressed into a half-space Z>O 1 The calculated values of the 
functions h,(p,a) and the radius of the contact area ~".@,a) are presented on the right 
side Of the table for elastic deformations of the unevenness (upper row for h, and lower for 

a*). The distributions of the contact pressure Pa (r*)r 7, = g+*-#- y 2 are shown in Fig.6. The 
solution of Hertz's problem (p-0) is shown by dashes. Curve 1 corresponds to the values 
p = 0.6, a = 0.6, curve 2 to the values p = 0.6, a = 0.2. and curve 3 to the values p=O.6, a=O. 

For a=0 the roughness layer does not hinder insertion of the stamp and the parameter 

Ir indicates the thickness of the rough layer with respect to h. Hence, for small '7. (when 
the resistance of the rough layer ta insertion of the stamp is not large) and high p (when 
in addition to the low resistance of the rough layer, its thickness relative to h is consider- 
able), the contact pressure in a fairly broad neighbourhood ofthecontact area boundary is 
almost zero, and similar to the Hertz value near the centre of the contact area (Fig.6, curve 
2). In this case the main resistance to stamp insertion turns out to be the elastic half- 
space: the stamp seems to press through the weak rough layer and "be seated" on the more rigid 
elastic foundation. The presence of the point of inflection on curve 2 is explained thereby. 

Results are give for the same discretization of the problem as in Example 2. The com- 
putation time for one value of the pair of parameters p, Q is 30 seconds. An analogous problem 
was solved by another method in /lo/. The numerical results presented there for graphs 1 and 
2 (the radii of the contact areas, and the contact pressures) are practically in agreement 
with the results of the present paper (the values of the parameters n-0 and p = 0.5, 'x = 2'3) 

correspond, respectively, to graphs 1 and 2 in /lo/). The first initial approximation in 

methods (2.1)-(2.3) was assumed to be equal, ll.$ W,) = 0.5 I in all the examples. 
The influence of body roughness on the contact mechanical characteristicscanbedetermined 

on the basis of the analysis performed. AS mentioned, the case PL_; (J corresponds to EIertz' 

formulation of the problem for ideally smooth bodies. The higher the value of the p, the 
greater the difference between problem (1.9) and the problem in Hertz'f formulation. It 
follows from relations (1.9) that for small depths of insertion h (i.e., for fairly small 

values of P), the value of the parameter P can be large. Large values of p can be achieved 
for comparatively good treatment of the surface for high-modulus materials and for surfaces 
with low treatment quality, i.e. for large A and small a- Body roughness results mainly 

in smoothing of the contact pressure diagrams, and an increase in the convergence between 
bodies as well as in the contact area (as compared with the corresponding contact character- 
istics of ideally smooth bodies). 

REFERENCES 

1. DEMKIN N.B., Contact Between Rough Surfaces. Nauka, Moscow, 1970. 
2. YJUGEL'SKII I.V., DOBYCHIN M.N. and KOMBALOV V.S., Friction and Wear Computational 

Principles. Mashinostroenie, Moscow, 1977. 



757 

3. 

4. 

5. 

6. 
7. 

a. 

9. 

GALIN L.A., Contact Problems of Elasticity and Viscoelasticity Theories. Nauka, Moscow, 
1980. 

GORYACHBVAI.G., Plane and axisymmetric contact problems for rough elastic bodies, PMM, 
vo1.43, No-l, 1979. 

GALIN L-A., ed., Development of the Theory of Contact Problems in the USSR. Nauka, Moscow, 

1976. 

KANTOROVICH L.V. and AKILOV G.P., Functional Analysis, Nauka, Moscow, 1977. 
ZABREIXO P-P., KOSHELEV A.X., KRASNOSEL'SKII M-A., MIKHLIN S.G., RAKOVSHCHIK L.S. and 

STETSENKO V.YA., Integral Equations, Nauka, Moscow, 1968. 
VAINBERG M. M., The Variational Method and the Method of Montonic Operators in the Theory 

of Non-linear Equations. Nauka, Moscow, 1972. 
GALANOV B.A., On an approximate solution of certain problems of the elastic contact of two 
bodies, Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.5, 1981. 

10. RABINOVICH A.S., Axisymmetric contact problem for rough elastic bodies. Izv. Akad. Nauk 
SSSR, Mekhan. Tverd. Tela. No.4, 1975. 

Translated by M.D.F. 

PMM u.~.~.R.,vol.48,No.6,pp.757-764,1984 OOZl-8928/84 $10.00+0.00 
Printed in Great Britain 01986 Pergamon Press Ltd. 

EQUILIBRIUM OF AN ELASTIC LAYER WEAKENED BY PLANE CRACKS* 

B.I. SMETANIN and B.V. SOBOL' 

The spatial problem of the elastic equilibrium of a layer in whose middle 
plane there is a system of cracks is considered. The cracks are maintained 
open under the action of a normal load applied to their edges. The layer 
faces are compressed between two rigid smooth foundations. The problem 
is reduced to solving an integral equation of the first kind. The asymptotic 
methods of "large and small J." /l/ as well as the method of successive 
approximations and a variational method are used to construct the solutions 
of this equation for elliptically and rectangularly shaped cracks in 
different ranges of variation of the geomtrical parameters. 

1. Formulation of the problem, properties of the kernel of the integral 
equation. Let a domain occupied by an elastic medium be determined by the inequalities 
IZI<i& 1"1-=z=,IYl<oo. A crack occupying a certain domain $J in planform is in the 
z = 0 plane. .Aload u,= --p (2, y), z = &O is applied to the crack edges. The following 
conditions are realized on the faces of the layer, at 'z = Ah : W= 0, ~~~ = rvz = 0, where w 

is the projection of the displacement vector on the Oa axis, and ~~~~~~~ are the stress 
tensor components. 

The problem under consideration is reduced to the solution of an integral equation of 
the first kind by the methods of integral transformation: 

v(z,y)=W(s,y,O), AL- 

R = lb - V + (Y - r1Yv Q = 2 ti: +I 

where E is Young's modulus, v is Poisson's ratio, and J, (5) is the Bessel function of 
the first kind. 

As a result of utilizing the well-known integral representations /l/, the integral 
equation (1.1) can be converted to the form 
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